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J. Phys. A:  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Lagrange multipliers and bounds to quantum mechanical 
properties 

31. COHEN and T. FELDMANN 
Department of Physical Chemistry, The Hebrew University, Jerusalem, Israel 
iVS. received 15th March 1971 

Abstract. Variational lower and upper bounds to energy levels of a quantum 
mechanical system with Hamiltonian H, as well as to overlap integrals between 
approximate and exact wavefunctions, have been obtained by a unified treat- 
ment. This is based on Lagrange’s method of undetermined multipliers, in 
which a number of calculated moments of I3 play the role of constraints, New 
lower and upper bounds to the energy of the first excited state of the system 
are derived. 

1. Introduction 
In  this paper, we describe a general procedure for calculating lower and upper 

bounds to various physical properties of a quantum mechanical system, based on 
Lagrange’s method of ‘undetermined multipliers’. This method provides a convenient 
general framework within which we obtain many of the known bounds to energies 
and overlaps (see for example Eckart 1930, Gordon 1968, Wang 1969, Weinhold 1970) 
as well as some new bounds. The  basic idea of the procedure is as follows. I n  our 
search for a bound to the quantum mechanical property Q, we define a function which 
is formally identical with Q subjected to certain constraints, and investigate the 
extrema of this function. A maximum point then provides an upper bound, a 
minimum point a lower bound to Q. 

In  our treatment, the variables are taken to be the overlaps between the exact 
(unknown) wavefunctions and all approximate wavefunctions which yield $xed values 
of a number of moments of the Hamiltonian of the system under consideration. These 
fixed values of the moments represent the constraints on the variation. Our method is 
thus based on the same input data as Gordon’s (1968) method, and so may be expected 
to yield his bounds fairly directly. 

2. Formulation of the procedure 
Consider a quantum mechanical system with Hamiltonian H. We assume the 

existence of a complete orthonormal set of real eigenfunctions (#,} with corres- 
ponding energy eigenvalues (E,} ordered so as to form a nondecreasing sequence, so 
that 

HPn = EnPn (1) 
and 

E ,  < En+l(n 2 0) .  
We assume further that any real approximate solution C$ of equation (1) which 
satisfies the physical boundary conditions may be expressed in terms of the {#n} by 
means of an eigenfunction expansion 
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in which the summation may include continuum contributions. The  orthonormality 
of the set {I/,} implies that 

a n  = ( 9 1 4 n  >. (4) 

( 5  1 
We now introduce the moments of the Hamiltonian H 

I k  = (+1Hk+} = 2 an2Enk (k = 0, 1, ... m) 
n 

and suppose that these values of the moments are given$xed quantities. We thus 
consider the class of trial functions + which satisfy the conditions of constraint 

gk(ao, a,, ... a,, ...) = ( Z a n 2 E n k - I k )  = O ( K  = 0 ,  1, ... m) (6) 
n 

and vie now seek the extrema of the function 

f (ao,a, ,  ...a,, . . * ; X o , ~ 1 ,  ..*Am) 
m 

= Q(aO,a1, m . 9  an.. .)+ 2 Xkgk(aO,a , ,  * . . a n ,  ...). ( 7 )  
k=O 

The equations 
-- af - 0 (n  = 0, 1, ...> 
aan 

together with the conditions of constraint, equation (6), suffice to determine extremal 
values of the variables (do,  f,, ... dn,  ...) together with the corresponding values of the 
Lagrange multipliers (Ao,  A,, ... A,) and finally the extremal values of 

Q = Q(do, d,, ... d,, ...). 

However, not every extremal point A = A(ZO, d,, ... d n ,  ...) defines a maximum or 
a minimum off. The  necessary and sufficient condition for a relative maximum or 
minimum at A is obtained by considering the determinantal equation (Hancock 1960 
pp. 115-6) 

*(p) = I"-;: = 0. 

in which the matrix F has elements 

Fij = (z) ( i , j = O , l ,  ... n...) 
aa,aaj 

the matrix G has elements 

and GT is the transpose of G. 
I n  the usual case, F is a square matrix of order N a n d  G is a rectangular matrix of 

order N x M, corresponding to a function Q of N variables subjected to M conditions 
of constraint. The  expansion of A(p) yields a polynomial of order N-M, whose 
roots are all positive if Q is a minimum at A, and are all negative if 9 is a maximum 
at A. 
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In our case, F is actually of infinite order, but we assume that the basic theorem 
holds for this case also, since many of our results may be verified directly by other 
methods. 

3. Lower bound to ( H )  
We illustrate the general procedure by rederiving the well known Rayleigh-Ritz 

variation theorem, in the form of a lower bound to ( H ) .  Given only the single 
constraint of normalization, we have explicitly 

and at an extremum A, we require for all n 

= 25,(En + A,) = 0. (3 H 

T h e  corresponding extrema1 value f is obtained by multiplying equation (13) by 6,, 
summing, and using the condition of constraint, with the result that 

f =  - A o .  (14) 

A,= - E m  Zn = 0 (alln # m). (15)  

In  general, we satisfy equation (13) by choosing 

'To determine the nature of the resulting extremum, we compute the matrix elements 
of F and G 

F,, = 2(E, + X o ) 6 i j  2(Et - Em)6i, 
and 

Go! = 26, 

and derive the explicit form of equation (9): 

I 
I 

* I  

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - I - -  

I 2Zm ' 0  
= 45,2 n (2(E,-Em)-p} = 0. 

i # m  

For the sake of clarity, only the nonvanishing elements of the determinant A(p)  are 
,displayed in equation (174. 
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The form of the determinant appearing in equation (17) is typical of all the 
examples treated in the present paper, having nonvanishing elements appearing in the 
submatrices G and GT only in those rows and columns in which the diagonal elements 
of F vanish identically. Thus, in general, the roots of the equation A(p) = 0 coincide 
with the nonvanishing diagonal elements of F and, since this is a general feature, it is 
sufficient in the following to consider only the signs of these diagonal matrix 
elements. 

Now in equation (16a) the diagonal elements Fit  will all be positive if 

E,-E, > 0 for all i # m .  (18) 
Taking account of the ordering of the energy levels(equation(2)), we obtain a minimum 
for f if and only if E,,, = E,, which yields the familiar Rayleigh-Ritz result: 

( H )  I1 3 Eo. (19 )  
Analogously, if 4 is chosen orthogonal to the exact eigenfunctions t,!~~, ... $I,- , so 

that a,  = ... = a,-l = 0 ,  then starting from 

we obtain the ‘variation theorem for excited states’ : 

4. Simple bounds to the overlap 

ak2, and give some generalizations. Here, we include two constraints, so that 
As a second example, we rederive Eckart’s (1930) bound to an individual overlap, 

f = ak2+ho( C a n 2 -  l)+h,( xan2E , - f l ) .  (22) 
n n 

At an extremum A, we require 

and 

= ~z,(X,+X,E,) = 0 (alls # k) (23b) 

and by multiplying each of equations (23) by the appropriate Z,, summing, and using 
the two conditions of constraint, we obtain the extrema1 value 

f =  -(i0+X1f1). 

Equations (23) are satisfied by choosing 

and 
( 2 9 )  5, = 0 (alls # k, m). 
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Then the corresponding extrema1 value off is 

and it follows from the normalization constraint that 

Since these expressions for dk2 and dm2 must clearly be non-negative, it follows that 
I ,  must lie in the interval (Ek, Em). 

The nature of the extremum is now obtained from the diagonal elements 

Fit = 2(61k + XO XlEi) 
= 2{6ik - (Ei - Em) / (Ek  - Em)}* (286) 

Here, there are two distinct possibilities. If E, = Eo and E,  = E,, the Fit are all 
positive, and we obtain from equation (26) the lower bound 

which is just Eckart’s (1930) result. However, if E,  = E ,  then the Fit are all negatize 
in which case we have the upper bounds 

(allk 2 1 ) .  11 - E, ak2 < cik2 = ~ 

For the case in which + can be chosen orthogonal to the exact eigenfunctions 
= 0, the function 1cl0, ... $j-l so that a. = ... = 

leads similarly to the analogous results 

and 

Somewhat weaker bounds, which remain valid when the restrictive orthogonality 
constraints are relaxed, will be derived in the following section. 

5. Overlap bounds for excited states 
Rigorous bounds to an individual overlap, a,:, cannot be obtained for excited 

states unless the appropriate trial function fulfills highly restrictive orthogonality 
conditions. However, it is possible to obtain rigorous bounds to certain sums of a 
finite number of such overlaps, which may be useful. Thus, defining 

N 

S N  = C an2 
n=O 

( 3 3 )  
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and again including two constraints SO that 

f = S ,  + &( C a n 2  - 1) + hi( 2 an2En - 11) 
n n 

we obtain at an extremum A 

= 2441 +X,+X,E,) = 0 (allk 6 N )  (2) 2 
and 

= 2ii,(X0 + XIE,) = 0 (all s 2 N +  1) (E) 2 

with the corresponding extrema1 value 

J =  s, = -(X0+X1I1). 
We satisfy equation (35)  by choosing 

and 

leading to 
iik = ii, = 0 (allk # m,  s # n) 

En - 11 
En-Em 

J =  s, = 

and clearly, Il lies in the interval ( E m ,  E,) with E,  6 EN 6 E,. 
I n  this case, we find that 

(34)  

so that here the Fii are all positive if and only if Em = 
lower bound 

For the ground state, this result reduces naturally to 
above. 

Eo and E ,  = EN+l, giving the 

(40) 

Eckart’s bound, equation (29) 

6. Bounds to energy levels involving higher moments 
The procedure of 9 3 may be extended straightforwardly to yield lower bounds to 

higher moments ( H n )  of the Hamiltonian. It is instructive to rewrite the resulting 
inequalities in the form of bounds to individual energy levels, many of which have 
been obtained by other authors. 

6.1. Energy bounds of Temple, Kato and Weinstein 
We seek a bound to ( H 2 )  subject to two constraints, and take in this case 

f = Zan2En2 +ho(Zan2--  l)+X,(Za,2En-11). (41) 
n n n 
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Two distinct lower bounds may be obtained here. First, we find for all n (ie without 
restriction on I,) 

Second, provided that Il  lies in the interval (En, En+1), we obtain 

( H 2  ) = I ,  2 1 2  = 211En - En2. 

( H 2 )  = I2 2 1 2  = I,(En+En+,)-EnEn+l* 

(42) 

(43 1 
Equation (43) naturally provides a more precise bound to I ,  than does the more 
generally valid equation (42). 

From equation (42), we have quite generally 

A2+(En-11)' > 0 
where we have written 

A2 I2-11, 2 0 .  

(44) 

(45) 
The inequality of equation (44) clearly cannot be used to obtain a bound to E,. 

On the other hand, we see from the inequality of equation (43) that 

A2-(En+1-11)(11-En) 2 0 (46) 
which leads immediately to the bounds of Temple (1928) and Kat0 (1949) : 

Note that the inequality of equation (46) holds trivially if I ,  lies outside the interval 
(En, En+,)* 

If we now assume that Il  lies in the interval 

En G I1 6 i!(En+En+l) 
then from equation (46) 

A2 2 (En+l- I l ) ( I l -En)  2 ( I l -En) ,  (49) 

(50) 

(51) 

(52) 

and similarly, if I ,  lies in the interval 

+(En- l+En)  6 I1 6 En 
then 

A2 2 (En-i'1)(I1-En-1) > (En-Ix),. 

I l - A  6 E,  6 I ;+A.  

Thus, for I ,  closer to E ,  than to any other level, we have Weinstein's (1934) bounds 

6.2. Gordon's bound to Eo, and bounds to El 
Now consider bounds to ( H 3 )  subject to three constraints, so that here 

f = 2 an2En3+ho( C a n 2 -  I )+&( Can2En-I,)+h2( Can2En2-Iz). ( 5 3 )  
n n n n 

In  this case, we obtain three lower bounds of increasing precision, namely 

( H 3  ) = I3 2 1, = 312E0 - 311E02 + Eo3 (54,) 
( H 3 )  = I3 2 1, = 12(Eo+2E,)-I~E,(2Eo+E,)+EoEn2 (54b) 
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and since this holds for  all n, we conclude that 

which may be written alternatively 

A2(Eo2 - 2ctEO + 2 ~ 1 1 -  1 2 )  0 (56b) 

where 
2% = (13-1112)/A2. 

We now define 
4% y )  = 1 2  - Il(X +r> + xy 

= A2 + (11 - x ) ( I ~  - y )  
and obtain from equation (56b)  

(57a) 

(574  

Since, quite generally, 

we obtain from equation (58) Gordon’s (1968) upper bound to Eo 

Eo < E-A’”(N, E ) .  

Eo 2 P - J@’2(P’ P )  

( 60) 
It is of interest that the lower bound to Eo of Stevenson and Crawford (1938) may be 
written similarly 

where ,L? is any real number satisfying the inequality 
(61 )  

P 6 $(Eo+Ei). (62) 
Thus, we see from equations (59) and (62) that whenever 2% is close to Eo + E, it is to 
be expected that Gordon’s upper bound will be rather precise. 

Now, from equation (54c) with n = 0, we obtain the upper bound to Eo 

where we have written 
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Also, from equation (47) we have the lower bound to Eo,  valid for I ,  < E, 

Eo >, 11-A2/(E1-11). 
Thus, we deduce from equations (63) and (65) that 

which reduces to 
I2 - 2ctI1+ 2 ~ E 1 -  El2 > 0 

or, alternatively 

We thus obtain new lower and upper bounds to E, 
A ( x ,  .) > ( R - E 1 ) 2 .  

R - A ~ ’ ~ ( c ( ,  E) < E1 6 ~ + A l ” ( a ,  R). (68) 
Both Gordon’s bound to Eo and the present bounds to E, require no knowledge of 
exact energy levels. By contrast, equations (54) give upper bounds to E ,  in the form 

B(En En) 
A(En, En) 

Eo 6 

valid for any En, and in the form 

valid for any pair En, En+1. Certain of these bounds will be more precise than 
Gordon’s but since they require knowledge of the exact energy levels, they must be 
regarded as less satisfactory. 

7. Improved bounds to the overlap 
Bounds to an individual overlap, ak2, more precise than Eckart’s (1930) lower 

bound and the upper bounds derived in 3 4, may be obtained by means of additional 
constraints. For example, if we choose 

f = a,’+&( C a n 2 -  I)+h,( Can2En-Ii)+&( xan2En2- I z )  

J’= Hk2 = A(E, ,  Em)/(Ek-El)(Ek-Em) > O 

G12 = A(Ek, Em)/(Ei-Ek)(El-Em) > 0 

d m 2  = A(Ek, El)/(Em-Eh)(Em-El) 2 0. 

(70) 
n n n 

the usual analysis leads to the extrema1 value 

(71) 

( 7 2 4  

(72b) 

ak2 < A(En, En)/(Elc-En)2 (k f: n)  (734  

ak2 < A(En, En+l) / (Ek-En)(E~-En+l)  (k # n ,  n+ 1). (73b) 

while the conditions of constraint here yield 

and 

I n  general, equation (71) constitutes an upper bound if either 1 = m = n, giving 

or I = n, m = n + l ,  so that 
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In  the former case, it follows from equations (72) that ,.4(Ek, E,) = 0. In  the latter 
case, we require either 

or 
A(Ek, En+,) < 0 < A(Ek, En) if Ek 6 En (74a) 

(74b) 

a/c2 6 El)/(Ek-EO)(Ek-El) (h  # 0,1) (75) 

A(Ek, En) < 0 6 A(Ek, En+,) if Ek 2 En+1- 

If we now compare the upper bound of equation (73b) with n = 0 

with the upper bound of equation (30), it follows easily using equation (74b) that the 
higher order bound is always more precise. Similarly, it may be shown quite generally 
that equation (73b) gives a more precise upper bound than our earlier result 

ak2 6 A2/A(Ek, E,) (7 6) 
(Cohen and Feldmann 1969), but equation (76) gives a better bound than 
equation (73a). 

I n  the exceptional case 1 = n-  1, m = n+ 1, equation (71) may be shown to 
vield a lower bound to an2 

which is useful only if 
A(En-1, En+,) 6 0 .  

Equation (77) clearly cannot be used to obtain a lower bound to ao2. In  order to 
obtain such a lower bound, it is necessary to include an additional constraint, by 
taking 

f = ak2+ho( C a n 2 -  I)+h,( Can2En-11)+hz( Can2En2-12)+X3( Can2En3-13). 
n n n n 

(79) 
A large number of different extrema can now be deduced in the usual way, and in 
particular we obtain the lower bound 

(80) 
E1-11 (En-Eo)A(Eo, Ei)+En+iA(Eo, El)-B(EO, El)  
El -Eo 

ao2 2 z o 2  = ___ + 
(El - Eo)(En - &)(En + 1 - Eo) 

Since these latter two expressions cannot be negative, we deduce that 
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showing at once that the bound (equation (80)) is always an improvement over 
Eckart's bound (equation (29)). In  fact, it may be shown similarly using equation (52) 
that equation (80) also provides a more precise lower bound than Gordon's (1968) 
lower bound to ao2 

However, our new bound requires knowledge of the energy levels En, E,, which are 
not required by Gordon. 

8. Improved bounds to S,  

additional constraints is straightforward, and we give here only some results. 
The  extension of the method of $ 5  to obtain improved bounds to S,  by including 

With three constraints, we obtain two upper bounds to S,  

and 

Using considerations similar to those of $ 7 ,  it may be shown that a previously 
determined upper bound (Cohen and Feldmann 1970) 

SN < A2/A(E,, EN) ( I  2 EN) (85) 
lies between the bounds of equations (84). Thus, the upper bounds to S, are seen 
t o  coincide with earlier bounds to aN2 (cf equations (73) and (76) above), and we 
again emphasize that what appears to be an upper bound to an individual overlap 
aN2 may in practice turn out to be a bound to the sum S, of all overlaps up to and 
including U N 2 .  

We also obtain two lower bounds to S, 

and 
SN 2 1-A(E,,E,+1)/(EN+l-E,)(EN+1-En+1) ( n  < N-1)  (86b) 

and note that it may be shown that the analogue of equation (85) 

sIi 2 1-A2/A(EN+1, E N + l )  ( E N + l  2 I )  
lies between the bounds of equations (86). 

(87) 

9. Conclusions 
The procedures described in the earlier sections of this paper may be extended 

without difficulty to obtain more precise bounds, provided that higher moments of 
the Hamiltonian can be computed. Unfortunately, for most systems of physical 
interest, moments higher than (H2) are extremely difficult to calculate, and for many 
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of the usual choices of trial function q5 the necessary integrals fail to converge. This 
difficulty applies also to other methods of computing bounds. The formalism developed 
here nevertheless yields most of the known bounds to energy levels and to overlap 
integrals between approximate and exact wave functions, as well as some new bounds 
to moments and to sums of overlap integrals. 
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